
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #10

Resource and object sharing

Lecture #10

Part I: Resource

• When you distribute your game, you do not
want the user to have access to the data
– audio, video, textures, 3D models, fonts, etc.

– for copyright or distribution policy

– to avoid huge folders

• You want to hide and combine them into one
(or few) file(s): the resource file(s)
– conventionally named resources.dat

– often one file per type (and/or per game level)

• A resource file is a binary file containing data
that you can distribute along with the
executable

4

Introduction

• The resource manager is in charge of

– creating the files during development

– loading the files at execution time

• You can create your own resource manager,

the format used for the resource files is then

up to you

– e.g. byte-by-byte format to import and export

textures, meshes and sound files

– encryption and compression algorithms can also

be incorporated at the same time

5

Custom resource format

• The resource file is composed of

– A header (resource file structure)

– A body (data information and content)

6

File format

• The header

– contains information describing the content of

the resource, for example:

– First 4 bytes

• an integer value n indicating how many data are

stored in the resource file

– Next 4 x n bytes

• an integer value pointing to the storage location of

the data within the resource

• e.g. value 2341 indicates that data starts at the

resource’s 2341 byte

7

File format

• The body

– contains the name of each resource stored and
the actual data

– for each data
• First 4 bytes

– an integer value d indicating how many bytes of data

• Next 4 bytes
– an integer value c indicating how many characters are in the

resource name

• Next c bytes
– each byte contains a name character

• Next d bytes
– the stored data

8

File format

• Example

– the resource file is 30074 bytes in size (approx. 29.4 KB) and

contains the data represented by TEST.TXT, TEST2.BMP
and TEST3.WAV

9

File format

0-3 3 (Integer indicating that 3 data are stored in this resource file)

4-7 16 (Integer indicating that the first data is stored from the 16th byte)

8-11 41 (Integer indicating that the second data is stored from the 41st byte)

12-15 10058 (Integer indicating that the third data is stored from the 10058th byte)

16-19 9 (Integer indicating that the first stored data contains 9 bytes)

20-23 8 (Integer indicating that the first stored data's name is 8 characters in length)

24-31 TEST.TXT (8 bytes, each encoding one character of the first stored data's name)

32-40 Testing12 (9 bytes, containing the first stored data, which happens to be some text)

41-44 10000 (Integer indicating that the second stored data contains 10000 bytes)

45-48 9 (Integer indicating that the second stored data's name is 9 characters in length)

49-57 TEST2.BMP (9 bytes, each encoding one character of the second stored data's name)

58-10057 ... (10000 bytes, representing the data stored within TEST2.BMP. Data not shown here.)

10058-10061 20000 (Integer indicating that the third stored data contains 20000 bytes)

10062-10065 9 (Integer indicating that the third stored data's name is 9 characters in length)

10066-10074 TEST3.WAV (9 bytes, each encoding one character of the third stored data's name)

10075-30074 ... (20000 bytes, representing the data stored within TEST3.BMP. Data not shown here.)

BYTELOC DATA EXPLANATION

• We need a component that can store and read

files in this format: the resource manager

10

Resource manager

class ResourceManager {

 public:

 struct ResourceInfo {

 int size;

 int namesize;

 string name;

 }; // structure to store file information within the resource

 void createResourceFile(string resFolder, string resFile);

 // create the resource file resFile from all files in resFolder

 vector<ResourceInfo> infoFiles(string resFolder);

 // get the file information from all files in resFolder

 char * getResourceByName(string resFile, string resName, int &sizeData);

 // get the data from a resource file (update sizeData)

};

• To get the information structures (Windows)

11

Resource manager

#include <windows.h>

#include <sys/stat.h>

vector<ResourceInfo> infoFiles (string resFolder) {

 vector<ResourceInfo> res;

 bool success = SetCurrentDirectory(resFolder.c_str()); // change directory

 if (!success) {

 cout << "Error directory not found:" << resFolder;

 return res;

 }

 WIN32_FIND_DATA FindFileData;

 HANDLE hFind = FindFirstFile("*",&FindFileData); // find 1st element in folder

 if (hFind == INVALID_HANDLE_VALUE) return res;

 // ...

• To get the information structures (Windows)

12

Resource manager

 // ...

 do {

 string filename (FindFileData.cFileName);

 if (filename.compare(".") && filename.compare("..")) {

 // not self or parent, could also check for sub-directory

 ResourceInfo resinfo;

 resinfo.size = (FindFileData.nFileSizeHigh * (MAXDWORD+1)) +

 FindFileData.nFileSizeLow; // set file size

 resinfo.namesize = filename.length(); // set file name size

 resinfo.name = filename; // set file name

 res.push_back(resinfo); // store file info

 }

 }

 while (FindNextFile(hFind,&FindFileData) != 0);

 FindClose(hFind);

 return res;

}

• Creation of the resource file

13

Resource manager

void createResourceFile(string resFolder, string resFile) {

 ofstream outfile; // output resource file

 outfile.open(resFile,ios::binary);

 if (!outfile.is_open()) {

 cout << "Unable to create file: " << resFile;

 system("pause");

 return;

 }

 char * buffer; // buffer to save

 // get all files information

 vector<ResourceInfo> fileinfo = infoFiles(resFolder);

 int numberOfFiles = (int) fileinfo.size();

 buffer = (char *) &numberOfFiles;

 outfile.write(buffer, sizeof(int)); // write the number of files

 // ...

• Creation of the resource file

14

Resource manager

 // ...

 // resource header:

 int offset = (numberOfFiles+1) * sizeof(int);

 // header offset is +1 because of the first "number of files" integer

 for (int f = 0; f < numberOfFiles; f++) {

 // location of the data file within resource

 buffer = (char *) &offset;

 outfile.write(buffer, sizeof(int));

 // update offset: file size + name size + name + data

 offset += sizeof(int) + sizeof(int) + fileinfo[f].namesize +

 fileinfo[f].size;

 }

 // ...

• Creation of the resource file

15

Resource manager

 // ..

 // resource body:

 for (int f = 0; f < numberOfFiles; f++) {

 int datasize = fileinfo[f].size;

 buffer = (char *) &datasize;

 outfile.write(buffer, sizeof(int)); // size of the file

 int namesize = fileinfo[f].namesize;

 buffer = (char *) &namesize;

 outfile.write(buffer, sizeof(int)); // size of the file name

 const char * filename = fileinfo[f].name.c_str();

 outfile.write(filename, namesize); // name of the file

 ifstream datafile;

 datafile.open(filename,ios::binary);

 char * readData = new char [datasize];

 datafile.read(readData,datasize);

 outfile.write(readData,datasize); // copy all data at once

 datafile.close();

 delete [] readData;

 }

 // close resource file

 outfile.close();

}

• Reading of the resource file

16

Resource manager

char * getResourceByName (string resFile, string resName, int &sizeData) {

 ifstream infile; // input resource file

 infile.open(resFile,ios::binary);

 if (!infile.is_open()) {

 cout << "Unable to open file: " << resFile;

 system("pause");

 return NULL;

 }

 // buffer to load data

 char * buffer = new char [sizeof(int)];

 // number of files

 infile.read(buffer, sizeof(int));

 int numberOfFiles = *((int *) buffer);

 // ...

• Reading of the resource file

17

Resource manager

 // ...

 // vector of offset in header

 vector<int> resourceAddress;

 for (int f = 0; f < numberOfFiles; f++) {

 // read each file location

 infile.read(buffer, sizeof(int));

 int address = *((int *) buffer);

 // store them in vector

 resourceAddress.push_back(address);

 }

 // ...

• Reading of the resource file

18

Resource manager

 // ...

 // resource body

 for (int f = 0; f < numberOfFiles; f++) {

 int location = resourceAddress[f];

 infile.seekg(location);

 infile.read(buffer, sizeof(int)); // read file data size

 int size = *((int *) buffer);

 infile.read(buffer, sizeof(int)); // read file name size

 int namesize = *((int *) buffer);

 char * name = new char [namesize+1];

 infile.read(name, namesize); // read file name

 name[namesize] = '\0';

 string sname (name);

 if (!resName.compare(sname)) { // resource found!

 char * data = new char [size];

 infile.read(data, size); // read the data

 delete name;

 delete [] buffer;

 infile.close();

 sizeData = size; // update sizeData

 return data;

 }

 delete name;

 }

 // ...

• Reading of the resource file

19

Resource manager

 // ...

 // exit properly

 delete [] buffer;

 infile.close();

 return NULL;

}

• Usage

20

Resource manager

// Manager creation

ResourceManager mgr;

// Create the resource file

mgr.createResourceFile(“GameResourceFolder”,“myResourceFile.dat”);

// Read from the resource file

int sizeData;

char * data = mgr.getResourceByName(“../myResourceFile.dat” ,

“myFile.ext” , sizeData);

// Use of the data (example)

for (int d=0; d < sizeData; d++) {

 // ... code using data[d] ...

}

• Then, some tools (libraries) with help you to
convert the char * data to a usable image,
sound, text etc. in your game

– Such as the Simple DirectMedia Layer (SDL)
library

• You can create your own conversion
routines that depends on the graphics
engine, audio manager etc.

• You can also physically re-create a
temporary file to load in your game and
delete it when done (much slower)

21

Resource manager

• The manager should not load twice the

same resource

– waste of time and memory

• The manager keeps track of the loaded

resources

– usually one map per type of resource

22

Resource manager

map<string, Texture2D *> _sprites;

map<string, SoundEffect *> _sounds;

map<string, 3DMesh *> _meshes;

// ...

• The manager checks the loaded assets before

reading the resource file again

• Or every asset is loaded at start-up to avoid lag at

run-time (but potential useless memory allocation)

23

Resource manager

Texture2D * getSprite(string assetName) {

 Texture2D * theTexture = NULL;

 map<string, Texture2D *>::iterator it = _sprites.find(assetName);

 if (it == _sprites.end()) { // asset not found

 int sizeData;

 char * data = mgr.getResourceByName(“resources.dat”,assetName,sizeData);

 theTexture = new Texture2D(data,sizedata);

 _sprites[assetName] = theTexture; // add resource to map

 }

 else theTexture = it->second; // asset already loaded

 return theTexture;

}

• Visual Studio has its own resource manager

• You can directly import some file formats

– Bitmap (bmp, dib, gif, jpg, jpe, jpeg, png)

– Icon (ico)

– Cursor (cur)

– Audio (wav)

– Web page (html, htm)

• You can create custom import procedures

for other formats

24

Visual Studio resources

Lecture #10

Part II: Object sharing

• Consider the following code

• What may happen here?

– the player object does not know that the enemy

object is deleted, creating a dangling pointer

• There are several solutions for solving this

object sharing problem

26

Object sharing

// Create a new enemy and point the player to it

Enemy* enemy = new Enemy();

player.setTarget(enemy);

// ...

// Some time later, the enemy dies

delete enemy;

• Solution 1: Do not allow object sharing in

your game

– Unfortunately not always possible or desirable

– It also means you have sometimes to keep

duplicate copies (textures, sounds, …)

– In the case of the enemy, we do not want to

pass a copy to it instead of the original, as its

state will change

27

Object sharing

• Solution 2: Ignore the problem

– Potentially this would lead to problems

• if the player want to access the enemy state

– For small project, it might work

– Probably only acceptable for a prototype or a

tech demo

– If everything is statically allocated, then you

could also get away with it

– However, no easy fixes when a bug does occur

28

Object sharing

• Solution 3: Leave it up to the owner

– Every shared object is assigned an owner

– The owner is the only responsible for creating,
managing and deleting the object

– Not possible to enforce on users, but if dealt
with carefully it could work

– What happens when an object changes owner?

– What to do with pointers from non-owner
objects?

• Add notifying behavior (Listener DP)

• And extra performance cost

29

Object sharing

• Solution 4: Reference counting

– No need for an owner

– Object is kept around as long as it is needed

– As soon as the last reference goes away, we

delete the object

30

Object sharing

• Solution 4: Reference counting

31

Object sharing

class RefCounted {

 public:

 virtual ~RefCounted() {};

 int addRef() { return ++refCount_; }

 int release(){

 --refCount_;

 int tmpRefCount = refCount_;

 if (refCount_ <= 0) delete this;

 return tmpRefCount; // copy of deleted refCount_

 // ok as function call on stack (return value and @)

 }

 int getRefCount() const { return refCount_; }

 protected:

 int refCount_;

};

• To use the reference counting functionality, a

class just inherits from RefCounted

• For additional security, we might declare the

destructor of RefCounted as protected

– called only from release function

32

Object sharing

class Enemy : public RefCounted {

 public:

// ...

 protected:

 // ...

 virtual ~Enemy ();

};

• Drawbacks of reference counting

– You have to remember to call addRef() and
release() ‘everywhere’ (and correctly)

• if not, either object never deleted (memory leak) or
deleted too early (run-time crash during further
access)

• quite difficult to maintain, and easily unstable

– Objects could get destroyed a bit too easily
• example: re-use of the same object few lines later

• we could add an object manager (mostly for
resources) that keeps always 1 reference to them

– More (awkward) code

33

Object sharing

• Solution 5: Handles

– Shared object problems are due to the

existence of multiple pointers to the same object

– Handles prevent that situation from happening

– Instead of using pointers to a shared object, we

are using an identifier (the handle)

– When we want to use the object, we ask the

owner for a pointer that corresponds to the

handle

– After usage, we throw the pointer away

34

Object sharing

• One pointer per shared object exists: the

one from the owner

• Users of the object pass by the handle first

• If the object does not exist anymore, a NULL

pointer is returned

• Handles can be a plain integer

• In order to ensure a unique identifier for

each entity, 32-bit number should be enough

35

Object sharing

• Examples

– Enemy object

– Handles for textures

36

Object sharing

typedef unsigned int Handle;

Handle hTexture = CreateTexture(“texture.tif”);

// ...

Texture* pTexture = GetTexture(hTexture);

if (pTexture != NULL) {

 // texture still exists, we can do something with it

}

typedef unsigned int Handle;

Handle hEnemy = CreateEnemy();

// ...

Enemy * pEnemy = GetEnemy(hEnemy);

• Handles can be cumbersome because we

need the translation step to get the pointer

– Generally implemented using a map, or a hash

table

– Main performance hit is caused by the

indirection level

• Again, think of at which level handles are

useful

– Do not try a “one-handle-per-polygon” approach

37

Object sharing

• Solution 6: Smart pointers

– Smart pointers know what is happening to the

objects that they refer to

– C++ flexibility allows us to create objects that

look and feel like pointers + do some extra work

for us such as:

• Check that memory is valid

• Keep reference counts and statistics

• Apply different pointer copying policies

• Delete object they are pointing to if the pointer itself is

destroyed

38

Object sharing

• Smart pointers generally behave like real

pointers

– -> and * operators implemented, fast copy, type-

safe, memory efficient

• Under the hood, smart pointers

– implement handles

– or do reference counting

39

Object sharing

• A handle-based smart pointer is simply a

wrapper around a handle

40

Object sharing

class EnemyPtr {

 public:

 EnemyPtr(Handle h) : hEnemy_(h) {}

 bool operator == (int n) { return n == (int)getEnemy(hEnemy_); }

 bool operator != (int n) { return !operator==(n); }

 Enemy * operator -> () { return getEnemy(hEnemy_); }

 Enemy & operator * () { return *getEnemy(hEnemy_); }

 private:

 Handle hEnemy_;

};

• We can treat it as a real pointer

• This EnemyPtr class works only for pointers

to Enemy objects

• We can use template to create smart

pointers of any type

41

Object sharing

EnemyPtr ptr(enemyHandle);

if (ptr != NULL) {

 cout << ptr->getName();

 const Point3D& pos = ptr->getPosition();

}

• Template smart pointers

42

Object sharing

template <class T>

class HandlePtr {

 public:

 HandlePtr(Handle h) : hObject_(h) {}

 bool operator == (int n) { return n == (int)getPtr(hObject_); }

 bool operator != (int n) { return !operator==(n); }

 T * operator -> () { return getPtr(hObject_); }

 T & operator * () { return *getPtr(hObject_); }

 private:

 Handle hObject_;

};

• Template smart pointers

43

Object sharing

typedef HandlePtr<Texture> TexturePtr;

typedef HandlePtr<Enemy> EnemyPtr;

// ...

EnemyPtr pEnemy = CreateEnemy();

// ...

if (pEnemy != NULL) Game::Instance()->addEnemy(*pEnemy);

TexturePtr pTexture = CreateTexture(“wall.png”);

// ...

if (pTexture != NULL) pTexture->draw();

• A reference-counting based smart pointer is

simply a wrapper around a reference counting

– Every time a smart pointer is created, the reference

count is incremented

– Wherever the object is deleted, the reference count

is decremented

• Reference counting (addRef, release) can be

moved from the shared object class to the

smart pointer class

• Template approach can also be implemented

for type-safe use with any pointer type

44

Object sharing

• Resources are usually shared objects

• RAII: resource acquisition is initialization

• Example

– Reading a file

– In case of critical error (e.g. exception thrown)

the file would not be closed

45

Resource maintenance

void World::LoadMap (const string& fileName) {

 FILE * file = fopen(fileName.c_str(),”r”);

 // read the file and do something with it

 // that might goes wrong

 fclose(file);

}

• Adding try/catch for exception safety

46

Resource maintenance

void World::LoadMap (const string& fileName) {

 FILE * file = NULL;

 try {

 file = fopen(fileName.c_str(),”r”);

 // read the file and do something with it

 // that might generate an exception

 }

 catch (...) {

 fclose(file);

 throw;

 }

 // ...

 fclose(file);

}

• All exceptions are caught and the file is closed,

i.e. the resource is released in the catch block

– Error-prone, because it can get rather complicated if

numerous resources are acquired and released

– C++ does not have a finally keyword

– Code duplication for delete/cleanup operations

• A more elegant solution

– Wrap resources into classes, and use constructors

for acquisition and destructors for release

• Destructors are called even when exceptions appear and

this way release is guaranteed

47

Resource maintenance

• A handler based file pointer class

48

Resource maintenance

class FilePtr {

 public:

 FilePtr(const std::string& fileName);

 ~FilePtr();

 FILE * getFileHandler();

 private:

 FILE * handler_;

}

FilePtr::FilePtr(const std::string& fileName) {

 handler_ = fopen(fileName.c_str(),”r”);

}

FilePtr::~FilePtr(){ fclose(handler_); }

FILE * FilePtr::getFileHandler(){ return handler_; }

• Using the file pointer class

– FilePtr object is automatically destroyed by the

destructor and the resource is released (either

by exception throwing or function termination)

49

Resource maintenance

void World::LoadMap (const string& fileName) {

 FilePtr file (fileName);

 // read the file and do something with it

 // that might generate an exception

}

• In case of an exception, the object p is not

deleted

50

Using auto_ptr

class Player {

 /* ... */

};

void Run () {

 Player * p = new Player();

 // <- throws exception

 delete p;

}

• Use auto_ptr for dynamically allocate local
objects (on the heap)

– to store a pointer to an object obtained via new

– to delete that object when it itself is destroyed (such
as when leaving block scope)

• auto_ptr takes care of deleting p when leaving
the scope

– either on normal return or when an exception
appears

51

Using auto_ptr

void Run () {

 auto_ptr<Player> p (new Player());

 // ...

}

• An auto_ptr owns the object it holds a

pointer to

• Copying an auto_ptr copies the pointer and

transfers ownership to the destination

• If more than one auto_ptr owns the same

object at the same time the behavior of the

program is undefined.

52

Using auto_ptr

• You can do

– p2 will own the object, p1 is set to NULL

– deleting p1 does not delete Player object

• You cannot do (should not do)

– more than one auto_ptr owns the Player object

53

Using auto_ptr

auto_ptr<Player> p1 (new Player());

auto_ptr<Player> p2 = p1;

Player* player = new Player();

auto_ptr<Player> p1 (player);

auto_ptr<Player> p2 (player);

• Conventional pointer vs. auto_ptr

54

Using auto_ptr

class Player {

public:

 Player();

 ~Player();

private:

 State * pS_;

};

class Player {

public:

 Player();

 ~Player();

private:

 auto_ptr<State> apS_;

};

Player::Player() : ps_(new State())

{ }

Player::~Player() {

 delete ps_;

}

Player::Player() : aps_(new State())

{ }

Player::~Player() { }

• The auto_ptr public members

55

Using auto_ptr

(constructor) // Construct auto_ptr object

(destructor) // Destruct auto_ptr

get // Get the pointer

operator* // Dereference object

operator-> // Dereference object member

operator== // Release and copy auto_ptr

release // Release pointer (set to NULL)

reset // Deallocate object pointed and set new value

End of lecture #10

Next lecture

Optimization and Advanced STL

