Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #10

Resource and object sharing

Lecture #10

Part |: Resource

Introduction

* When you distribute your game, you do not
want the user to have access to the data

— audio, video, textures, 3D models, fonts, etc.
— for copyright or distribution policy
— to avoid huge folders
* You want to hide and combine them into one
(or few) file(s): the resource file(s)
— conventionally named resources.dat
— often one file per type (and/or per game level)
* Aresource file Is a binary file containing data

that you can distribute along with the
executable

%
>

W
14
AN
5
c
-y

N
EN
L

Custom resource format

* The resource manager is in charge of
— creating the files during development
— loading the files at execution time

 YOU can create your own resource manager,
the format used for the resource files is then
up to you
— e.g. byte-by-byte format to import and export
textures, meshes and sound files

— encryption and compression algorithms can also
be incorporated at the same time

% Universiteit Utrecht 5

File format

* The resource file Is composed of
— A header (resource file structure)
— A body (data information and content)

% Universiteit Utrecht

File format

* The header

— contains information describing the content of
the resource, for example:

— First 4 bytes
e an integer value n indicating how many data are
stored in the resource file
— Next 4 x n bytes

 an integer value pointing to the storage location of
the data within the resource

* e.g. value 2341 indicates that data starts at the
resource’s 2341 byte

/ . . s
% Universiteit Utrecht

Ab*

N2

File format
* The body

— contains the name of each resource stored and
the actual data

— for each data
* First 4 bytes
— an integer value d indicating how many bytes of data

* Next 4 bytes

— an integer value c indicating how many characters are in the
resource name

* Next ¢ bytes
— each byte contains a name character

* Next d bytes
— the stored data

% Universiteit Utrecht 8

W

A

File format

« Example

BYTELOC DATA EXPLANATION

0-3 3 Integer indicating that 3 data are stored in this resource file)

10058-10061 20000
10062-10065 9
10066-10074 TEST3.WAV
10075-30074

Integer indicating that the third stored data contains 20000 bytes)
Integer indicating that the third stored data's name is 9 characters in length)

9 bytes, each encoding one character of the third stored data's name)

(
4-7 16 (Integer indicating that the first data is stored from the 16th byte)
8-11 41 (Integer indicating that the second data is stored from the 41st byte)
12-15 10058 (Integer indicating that the third data is stored from the 10058th byte)
16-19 9 (Integer indicating that the first stored data contains 9 bytes)
20-23 38 (Integer indicating that the first stored data's name is 8 characters in length)
24-31 TEST.TXT (8 bytes, each encoding one character of the first stored data's name)
32-40 Testingl2 (9 bytes, containing the first stored data, which happens to be some text)
41-44 10000 (Integer indicating that the second stored data contains 10000 bytes)
45-48 9 (Integer indicating that the second stored data's name is 9 characters in length)
49-57 TESTZ2 .BMP (9 bytes, each encoding one character of the second stored data's name)
58-10057 (10000 bytes, representing the data stored within TEST2.BMP. Data not shown here.)
(
(
(
(

20000 bytes, representing the data stored within TEST3.BMP. Data not shown here.)

the resource file is 30074 bytes in size (approx. 29.4 KB) and
contains the data represented by TEST.TXT, TEST2.BMP
and TEST3.WAV

@

N

N § Universiteit Utrecht

AN

Resource manager

 We need a component that can store and read
files In this format: the resource manager

ResourceManager {

ResourceInfo {
int size;
int namesize;
string name;
}: // structure to store file information within the resource

createResourceFile (string resFolder, string resFile);
// create the resource file resFile from all files in resFolder

vector<ResourcelInfo> infoFiles(string resFolder);
// get the file information from all files in resFolder

char * getResourceByName (string resFile, string resName, int &sizeData);
// get the data from a resource file (update sizeData)

¥

RN

3= bl = Universiteit Utrecht

NS

Resource manager

* To get the information structures (Windows)

<windows.h>
<sys/stat.h>

vector<ResourceInfo> infoFiles (string resFolder) {

vector<ResourceInfo> res;

bool success = SetCurrentDirectory(resFolder.c str()); // change directory
(!success) {
cout << "Error directory not found:" << resFolder;

resy

WIN32_FIND_DATA FindFileData;
HANDLE hFind = FindFirstFile("*",&FindFileData); // find 15t element in folder
(hFind == INVALID_HANDLE_VALUE) res;

//

RN

3= bl = Universiteit Utrecht

NS

Resource manager

* To get the information structures (Windows)

RN

//

string filename (FindFileData.cFileName) ;
(filename.compare (".") && filename.compare("..")) {
// not self or parent, could also check for sub-directory
ResourcelInfo resinfo;

resinfo.size = (FindFileData.nFileSizeHigh * (MAXDWORD+1)) +
FindFileData.nFileSizelow; // set file size

resinfo.namesize = filename.length(); // set file name size
resinfo.name = filename; // set file name
res.push back(resinfo); // store file info

t

}
(FindNextFile (hFind, &FindFileData) != 0);

FindClose (hFind) ;

res;

3= bl = Universiteit Utrecht

NS

Resource manager

 Creation of the resource file

createResourceFile (string resFolder, string resFile) {

ofstream outfile; // output resource file
outfile.open (resFile,ios::binary);
(!loutfile.is open()) {
cout << "Unable to create file: " << resFile;
system ("pause") ;

.
4

char * buffer; // buffer to save

// get all files information

vector<ResourceInfo> fileinfo = infoFiles (resFolder);
int numberOfFiles = (int) fileinfo.size();

buffer = (char *) &numberOfFiles;

outfile.write (buffer, (int)); // write the number of files

//

Wi
% b f‘-;; Universiteit Utrecht

NS

A

—

Resource manager

 Creation of the resource file

//

// resource header:
int offset = (numberOfFiles+l) * sizeof (int);
// header offset is +1 because of the first "number of files" integer

(int £ = 0; £ < numberOfFiles; f++) {
// location of the data file within resource
buffer = (char *) &offset;

outfile.write (buffer, sizeof (int));

// update offset: file size + name size + name + data

offset += sizeof (int) + sizeof(int) + fileinfo[f].namesize +
fileinfo[f] .size;

//

N

: Universiteit Utrecht

L

Resource manager

 Creation of the resource file

//

// resource body:

(int £ = 0; £ < numberOfFiles; f++) {

int datasize = fileinfo[f].size;

buffer = (char *) &datasize;

outfile.write (buffer, (int)); // size of the

int namesize = fileinfo[f] .namesize;

buffer = (char *) &namesize;

outfile.write (buffer, (int)); // size of the
char * filename = fileinfo[f].name.c str();

outfile.write (filename, namesize); // name of the
ifstream datafile;
datafile.open(filename,ios: :binary) ;
char * readData = char [datasize];
datafile.read (readData,datasize);
outfile.write (readData,datasize); // copy all data
datafile.close () ;

[] readData;

// close resource file
outfile.close () ;

file

file name

file

at once

RN

3= bl = Universiteit Utrecht

NS

Resource manager

* Reading of the resource file

ifstream infile; // input resource file
infile.open(resFile,ios::binary);
(!infile.is open()) {
cout << "Unable to open file: " << resFile;
system ("pause") ;
NULL;

// buffer to load data
char * buffer = char [(int) 1,

// number of files

infile.read (buffer, (int)) ;
int numberOfFiles = *((int *) buffer);
//

char * getResourceByName (string resFile, string resName, int &sizeData)

{

Wi
% b f‘-;; Universiteit Utrecht

NS

Resource manager

* Reading of the resource file

/...

// vector of offset in header
vector<int> resourceAddress;
(int £ = 0; £ < numberOfFiles; f++) {
// read each file location
infile.read(buffer, (int)) ;
int address = *((int *) buffer);
// store them in vector

resourceAddress.push back (address) ;

/] ...

RN

3= bl = Universiteit Utrecht

NS

Resource manager

* Reading of the resource file

//
// resource body
(int £ = 0; £ < numberOfFiles; f++) {
int location = resourceAddress|[f];
infile.seekg(location) ;
infile.read (buffer, (int)); // read file data size
int size = *((int *) buffer);
infile.read (buffer, (int)); // read file name size
int namesize = *((int *) buffer);
char * name = char [namesize+1];
infile.read (name, namesize); // read file name
name [namesize] = '\0';
string sname (name) ;
(!resName.compare (sname)) { // resource found!
char * data = char [size];
infile.read(data, size); // read the data
name;
[] buffer;

infile.close();

sizeData = size; // update sizeData
data;

name;,

Wi
% b f‘-;; Universiteit Utrecht

NS

Resource manager

* Reading of the resource file

/] ...

// exit properly

[] buffer;
infile.close () ;
NULL;

Wi
% b f‘-;; Universiteit Utrecht

NS

=

N

—

Resource manager

* Usage

// Manager creation

ResourceManager mgr;

// Create the resource file

mgr.createResourceFile (Y“GameResourceFolder”, “myResourceFile.dat”) ;

// Read from the resource file

int sizeData;

char * data = mgr.getResourceByName (“../myResourceFile.dat” ,
“myFile.ext” , sizeData);

// Use of the data (example)
(int d=0; d < sizeData; d++) {

// ... code using data[d]
}
= Universiteit Utrecht
N

I
N

&
L

Resource manager

Then, some tools (libraries) with help you to
convert the char * data to a usable image,
sound, text etc. in your game

— Such as the Simple DirectMedia Layer (SDL)
library

You can create your own conversion
routines that depends on the graphics
engine, audio manager etc.

You can also physically re-create a
temporary file to load in your game and
delete it when done (much slower)

Universiteit Utrecht

Resource manager

 The manager should not load twice the
same resource

— waste of time and memory

 The manager keeps track of the loaded
resources

— usually one map per type of resource

map<string, Texture2D *> sprites;
map<string, SoundEffect *> sounds;

map<string, 3DMesh *> meshes;

/...

NI

% N % Universiteit Utrecht 22

NS

Resource manager

 The manager checks the loaded assets before
reading the resource file again

* Or every asset Is loaded at start-up to avoid lag at
run-time (but potential useless memory allocation)

TextureZ2D * getSprite(string assetName) {
Texture2D * theTexture = NULL;
map<string, TextureZ2D *>::iterator it = sprites.find(assetName);
if (it == sprites.end()) { // asset not found
int sizeData;
char * data = mgr.getResourceByName (“resources.dat”,assetName, sizeData) ;
theTexture = new Texture2D (data,sizedata):;
_sprites[assetName] = theTexture; // add resource to map
}
else theTexture = it->second; // asset already loaded
return theTexture;

}

Wi
% b f‘-;; Universiteit Utrecht

NS

Visual Studio resources

 Visual Studio has its own resource manager
* You can directly import some file formats
— Bitmap (bmp, dib, gif, Jpg, Jpe, Jpeg, png)
— Icon (ico)
— Cursor (cur)
— Audio (wav)
— Web page (html, htm)
* You can create custom import procedures
for other formats

S £~
% N % Universiteit Utrecht 24

Lecture #10

Part Il: Object sharing

\

@

Object sharing

« Consider the following code

// Create a new enemy and point the player to it

Enemy* enemy = new Enemy()
player.setTarget (enemy) ;
/] ...

// Some time later, the enemy dies

delete enemy;

« What may happen here?

— the player object does not know that the enemy
object is deleted, creating a dangling pointer

* There are several solutions for solving this
object sharing problem

&

Wi,
b % Universiteit Utrecht
NS

Object sharing

« Solution 1: Do not allow object sharing in
your game
— Unfortunately not always possible or desirable

— It also means you have sometimes to keep
duplicate copies (textures, sounds, ...)

— In the case of the enemy, we do not want to
pass a copy to it instead of the original, as its
state will change

ﬁ% Universiteit Utrecht

27

Object sharing

« Solution 2: Ignore the problem

— Potentially this would lead to problems
« If the player want to access the enemy state

— For small project, it might work

— Probably only acceptable for a prototype or a
tech demo

— If everything Is statically allocated, then you
could also get away with it

— However, no easy fixes when a bug does occur

E Universiteit Utrecht

28

Object sharing

« Solution 3: Leave it up to the owner
— Every shared object is assigned an owner

— The owner Is the only responsible for creating,
managing and deleting the object

— Not possible to enforce on users, but if dealt
with carefully it could work

— What happens when an object changes owner?

— What to do with pointers from non-owner
objects?
« Add notifying behavior (Listener DP)
« And extra performance cost

E Universiteit Utrecht 29

Object sharing

« Solution 4: Reference counting
— No need for an owner
— Object Is kept around as long as it is needed

— As soon as the last reference goes away, we
delete the object

% Universiteit Utrecht

30

RN

Object sharing

Solution 4: Reference counting

}

RefCounted {

int

int

int

int

~RefCounted () {};
addRef () { ++refCount ; }

release() {
-—-refCount ;
int tmpRefCount = refCount ;
(refCount <= 0) ;
tmpRefCount; // copy of deleted refCount
// ok as function call on stack (return value a

getRefCount () { refCount ; }

refCount ;

nd @)

3= bl = Universiteit Utrecht

NS

Object sharing

* To use the reference counting functionality, a
class just inherits from RefCounted

* For additional security, we might declare the
destructor of RefCounted as protected

— called only from release function

class Enemy : public RefCounted {
public:
/] ...
protected:
/] ...

virtual ~Enemy ()

Universiteit Utrecht

Object sharing

* Drawbacks of reference counting

— You have to remember to call addRef() and
release() ‘everywhere’ (and correctly)

* If not, either object never deleted (memory leak) or
deleted too early (run-time crash during further
access)

« quite difficult to maintain, and easily unstable
— Objects could get destroyed a bit too easily

« example: re-use of the same object few lines later

« we could add an object manager (mostly for
resources) that keeps always 1 reference to them

— More (awkward) code

.-%

% Universiteit Utrecht 33

Ab*

N2

Object sharing

 Solution 5: Handles

— Shared object problems are due to the
existence of multiple pointers to the same object

— Handles prevent that situation from happening

— Instead of using pointers to a shared object, we
are using an identifier (the handle)

— When we want to use the object, we ask the
owner for a pointer that corresponds to the
handle

— After usage, we throw the pointer away

= N ’ Universiteit Utrecht 34

Object sharing

* One pointer per shared object exists: the
one from the owner

» Users of the object pass by the handle first

* If the object does not exist anymore, a NULL
pointer Is returned

 Handles can be a plain integer

* In order to ensure a unigue identifier for
each entity, 32-bit number should be enough

Object sharing

« Examples
— Enemy object

typedef unsigned int Handle;
Handle hEnemy = CreateEnemy () ;

//

Enemy * pEnemy = GetEnemy (hEnemy) ;

— Handles for textures

typedef unsigned int Handle;

Handle hTexture = CreateTexture (“texture.tif”);
//

Texture* pTexture = GetTexture (hTexture);

1f (pTexture != NULL) {

// texture still exists, we can do something with it

N
N

Universiteit Utrecht

Object sharing

« Handles can be cumbersome because we
need the translation step to get the pointer

— Generally implemented using a map, or a hash
table

— Main performance hit is caused by the
Indirection level

* Again, think of at which level handles are

useful
— Do not try a “one-handle-per-polygon” approach

M Universiteit Utrecht 37

Object sharing

« Solution 6: Smart pointers

— Smart pointers know what is happening to the
objects that they refer to

— C++ flexibility allows us to create objects that
look and feel like pointers + do some extra work
for us such as:

* Check that memory is valid

« Keep reference counts and statistics

« Apply different pointer copying policies

» Delete object they are pointing to if the pointer itself is
destroyed

§% Universiteit Utrecht

38

Object sharing

« Smart pointers generally behave like real
pointers

— -> and * operators implemented, fast copy, type-
safe, memory efficient

« Under the hood, smart pointers
— Implement handles
— or do reference counting

39

Object sharing

* A handle-based smart pointer is simply a
wrapper around a handle

EnemyPtr {

EnemyPtr (Handle h) : hEnemy (h) {}

bool operator == (int n) { n == (int)getEnemy (hEnemy); }
bool operator != (int n) { !loperator==(n); }
Enemy * operator -> () { getEnemy (hEnemy); }
Enemy & operator * () { *getEnemy (hEnemy); }

Handle hEnemy ;

Wi
$ b f‘-;; Universiteit Utrecht

NS

Object sharing

* We can treat it as a real pointer

EnemyPtr ptr (enemyHandle) ;
(ptr !'= NULL) {
cout << ptr->getName () ;
Point3D& pos = ptr->getPosition();
}

* This EnemyPtr class works only for pointers
to Enemy objects

* We can use template to create smart
pointers of any type

Wi
% b f‘-;; Universiteit Utrecht

NS

Object sharing

« Template smart pointers

<class T>
HandlePtr {

HandlePtr (Handle h) : hObject (h) {}

bool operator == (int n) { n == (int)getPtr (hObject); 1}
bool operator != (int n) { !operator==(n); }

T * operator -> () { getPtr (hObject); }

T & operator * () { *getPtr (hObject); }

Handle hObject ;
I

Wi
% b f‘-;; Universiteit Utrecht

NS

Object sharing

« Template smart pointers

HandlePtr<Texture> TexturePtr;
HandlePtr<Enemy> EnemyPtr;
//

EnemyPtr pEnemy = CreateEnemy() ;

//
(pEnemy != NULL) Game::Instance()->addEnemy (*pEnemy) ;
TexturePtr pTexture = CreateTexture (“wall.png”);
//
(pTexture != NULL) pTexture->draw() ;
AW

3= bl = Universiteit Utrecht

NS

Object sharing

» Areference-counting based smart pointer Is
simply a wrapper around a reference counting

— Every time a smart pointer is created, the reference
count Is incremented

— Wherever the object is deleted, the reference count
Is decremented
« Reference counting (addRef, release) can be
moved from the shared object class to the

smart pointer class

* Template approach can also be implemented
for type-safe use with any pointer type

Wi,
b % Universiteit Utrecht
N

’é

44

\

ﬁ

Resource maintenance

* Resources are usually shared objects
* RAII: resource acquisition is initialization

 Example
— Reading a file

void World::LoadMap (const string& fileName) {
FILE * file = fopen(fileName.c str(),”r”);
// read the file and do something with it

// that might goes wrong
fclose(file);

}

— In case of critical error (e.g. exception thrown)
the file would not be closed

Wi,
b % Universiteit Utrecht
NS

&

\

@

45

Resource maintenance
» Adding try/catch for exception safety

World: :LoadMap (string& fileName) {
FILE * file = NULL;
{
file = fopen(fileName.c str(),”r”);
// read the file and do something with it

// that might generate an exception

(...) {
fclose (file) ;

}
/]

fclose (file) ;

RN

3= bl = Universiteit Utrecht

NS

Resource maintenance

 All exceptions are caught and the file is closed,
l.e. the resource iIs released Iin the catch block

— Error-prone, because it can get rather complicated if
numerous resources are acquired and released

— C++ does not have a finally keyword
— Code duplication for delete/cleanup operations

* A more elegant solution

— Wrap resources into classes, and use constructors
for acquisition and destructors for release

« Destructors are called even when exceptions appear and
this way release is guaranteed

%;% Universiteit Utrecht 47

Resource maintenance

* A handler based file pointer class

FilePtr {
FilePtr (std::string& fileName) ;
~FilePtr();

FILE * getFileHandler();

FILE * handler ;

FilePtr::FilePtr (std::stringé& fileName) {
handler = fopen(fileName.c str(),”r”);

}

FilePtr::~FilePtr () { fclose (handler); }

FILE * FilePtr::getFileHandler () { handler ; }

Wi
% b f‘-;; Universiteit Utrecht

NS

Resource maintenance

« Using the file pointer class

vold World::LoadMap (const string& fileName) {
FilePtr file (fileName) ;
// read the file and do something with it

// that might generate an exception

}

— FilePtr object is automatically destroyed by the
destructor and the resource is released (either
by exception throwing or function termination)

%;% Universiteit Utrecht 49

Using auto _ptr

Player {
VA B Y

Run () {
Player * p = Player ()
// <- throws exception
|
}

* In case of an exception, the object p is not
deleted

Wi
% b f‘-;; Universiteit Utrecht

NS

Using auto _ptr

« Use auto_ptr for dynamically allocate local
objects (on the heap)
— to store a pointer to an object obtained via new

— to delete that object when it itself is destroyed (such
as when leaving block scope)

vold Run () {
auto ptr<Player> p (new Player()):;

/] ...
}

» auto ptr takes care of deleting p when leaving
the scope

— either on normal return or when an exception
appears

§ g% Universiteit Utrecht ot
U

Using auto _ptr

« An auto_ptr owns the object it holds a
pointer to

« Copying an auto_ptr copies the pointer and
transfers ownership to the destination

* If more than one auto_ptr owns the same
object at the same time the behavior of the
program Is undefined.

Using auto_ptr

* YOou can do

auto ptr<Player> pl (new Player());
auto ptr<Player> p2 = pl;

— p2 will own the object, pl is set to NULL
— deleting p1 does not delete Player object

* You cannot do (should not do)

Player* player = new Player();
auto ptr<Player> pl (player);

auto ptr<Player> p2 (player);

— more than one auto_ptr owns the

§% Universiteit Utrecht

Player object

53

Using auto_ptr

« Conventional pointer vs. auto_ptr

{3}

Player::~Player () {
ps_7

Player::Player ()
{ }

Player::~Player () {

Player ({ Player ({
Player () ; Player () ;
~Player () ; ~Player () ;
State * pS ; auto ptr<State> apS ;
I Y
Player::Player () : ps_ (State())

: aps_(

}

State ())

Wi
% b f‘-;; Universiteit Utrecht

NS

Using auto _ptr

* The auto_ptr public members

(constructor) // Construct auto ptr object

(destructor) // Destruct auto ptr

get // Get the pointer

operator* // Dereference object

operator-> // Dereference object member

operator== // Release and copy auto ptr

release // Release pointer (set to NULL)

reset // Deallocate object pointed and set new value
N2
3;;\“ b ‘4“ Universiteit Utrecht

A
L

55

End of lecture #10

Next lecture
Optimization and Advanced STL

